426 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| 
 | |
| /**
 | |
|  * PHPExcel_Best_Fit
 | |
|  *
 | |
|  * Copyright (c) 2006 - 2015 PHPExcel
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  * @category   PHPExcel
 | |
|  * @package    PHPExcel_Shared_Trend
 | |
|  * @copyright  Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 | |
|  * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 | |
|  * @version    ##VERSION##, ##DATE##
 | |
|  */
 | |
| class PHPExcel_Best_Fit
 | |
| {
 | |
|     /**
 | |
|      * Indicator flag for a calculation error
 | |
|      *
 | |
|      * @var    boolean
 | |
|      **/
 | |
|     protected $error = false;
 | |
| 
 | |
|     /**
 | |
|      * Algorithm type to use for best-fit
 | |
|      *
 | |
|      * @var    string
 | |
|      **/
 | |
|     protected $bestFitType = 'undetermined';
 | |
| 
 | |
|     /**
 | |
|      * Number of entries in the sets of x- and y-value arrays
 | |
|      *
 | |
|      * @var    int
 | |
|      **/
 | |
|     protected $valueCount = 0;
 | |
| 
 | |
|     /**
 | |
|      * X-value dataseries of values
 | |
|      *
 | |
|      * @var    float[]
 | |
|      **/
 | |
|     protected $xValues = array();
 | |
| 
 | |
|     /**
 | |
|      * Y-value dataseries of values
 | |
|      *
 | |
|      * @var    float[]
 | |
|      **/
 | |
|     protected $yValues = array();
 | |
| 
 | |
|     /**
 | |
|      * Flag indicating whether values should be adjusted to Y=0
 | |
|      *
 | |
|      * @var    boolean
 | |
|      **/
 | |
|     protected $adjustToZero = false;
 | |
| 
 | |
|     /**
 | |
|      * Y-value series of best-fit values
 | |
|      *
 | |
|      * @var    float[]
 | |
|      **/
 | |
|     protected $yBestFitValues = array();
 | |
| 
 | |
|     protected $goodnessOfFit = 1;
 | |
| 
 | |
|     protected $stdevOfResiduals = 0;
 | |
| 
 | |
|     protected $covariance = 0;
 | |
| 
 | |
|     protected $correlation = 0;
 | |
| 
 | |
|     protected $SSRegression = 0;
 | |
| 
 | |
|     protected $SSResiduals = 0;
 | |
| 
 | |
|     protected $DFResiduals = 0;
 | |
| 
 | |
|     protected $f = 0;
 | |
| 
 | |
|     protected $slope = 0;
 | |
| 
 | |
|     protected $slopeSE = 0;
 | |
| 
 | |
|     protected $intersect = 0;
 | |
| 
 | |
|     protected $intersectSE = 0;
 | |
| 
 | |
|     protected $xOffset = 0;
 | |
| 
 | |
|     protected $yOffset = 0;
 | |
| 
 | |
| 
 | |
|     public function getError()
 | |
|     {
 | |
|         return $this->error;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     public function getBestFitType()
 | |
|     {
 | |
|         return $this->bestFitType;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the Y-Value for a specified value of X
 | |
|      *
 | |
|      * @param     float        $xValue            X-Value
 | |
|      * @return     float                        Y-Value
 | |
|      */
 | |
|     public function getValueOfYForX($xValue)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the X-Value for a specified value of Y
 | |
|      *
 | |
|      * @param     float        $yValue            Y-Value
 | |
|      * @return     float                        X-Value
 | |
|      */
 | |
|     public function getValueOfXForY($yValue)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the original set of X-Values
 | |
|      *
 | |
|      * @return     float[]                X-Values
 | |
|      */
 | |
|     public function getXValues()
 | |
|     {
 | |
|         return $this->xValues;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the Equation of the best-fit line
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      */
 | |
|     public function getEquation($dp = 0)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the Slope of the line
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      */
 | |
|     public function getSlope($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->slope, $dp);
 | |
|         }
 | |
|         return $this->slope;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the standard error of the Slope
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      */
 | |
|     public function getSlopeSE($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->slopeSE, $dp);
 | |
|         }
 | |
|         return $this->slopeSE;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the Value of X where it intersects Y = 0
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      */
 | |
|     public function getIntersect($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->intersect, $dp);
 | |
|         }
 | |
|         return $this->intersect;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the standard error of the Intersect
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      */
 | |
|     public function getIntersectSE($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->intersectSE, $dp);
 | |
|         }
 | |
|         return $this->intersectSE;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the goodness of fit for this regression
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to return
 | |
|      * @return     float
 | |
|      */
 | |
|     public function getGoodnessOfFit($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->goodnessOfFit, $dp);
 | |
|         }
 | |
|         return $this->goodnessOfFit;
 | |
|     }
 | |
| 
 | |
|     public function getGoodnessOfFitPercent($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->goodnessOfFit * 100, $dp);
 | |
|         }
 | |
|         return $this->goodnessOfFit * 100;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Return the standard deviation of the residuals for this regression
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to return
 | |
|      * @return     float
 | |
|      */
 | |
|     public function getStdevOfResiduals($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->stdevOfResiduals, $dp);
 | |
|         }
 | |
|         return $this->stdevOfResiduals;
 | |
|     }
 | |
| 
 | |
|     public function getSSRegression($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->SSRegression, $dp);
 | |
|         }
 | |
|         return $this->SSRegression;
 | |
|     }
 | |
| 
 | |
|     public function getSSResiduals($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->SSResiduals, $dp);
 | |
|         }
 | |
|         return $this->SSResiduals;
 | |
|     }
 | |
| 
 | |
|     public function getDFResiduals($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->DFResiduals, $dp);
 | |
|         }
 | |
|         return $this->DFResiduals;
 | |
|     }
 | |
| 
 | |
|     public function getF($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->f, $dp);
 | |
|         }
 | |
|         return $this->f;
 | |
|     }
 | |
| 
 | |
|     public function getCovariance($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->covariance, $dp);
 | |
|         }
 | |
|         return $this->covariance;
 | |
|     }
 | |
| 
 | |
|     public function getCorrelation($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             return round($this->correlation, $dp);
 | |
|         }
 | |
|         return $this->correlation;
 | |
|     }
 | |
| 
 | |
|     public function getYBestFitValues()
 | |
|     {
 | |
|         return $this->yBestFitValues;
 | |
|     }
 | |
| 
 | |
|     protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const)
 | |
|     {
 | |
|         $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
 | |
|         foreach ($this->xValues as $xKey => $xValue) {
 | |
|             $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
 | |
| 
 | |
|             $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
 | |
|             if ($const) {
 | |
|                 $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
 | |
|             } else {
 | |
|                 $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
 | |
|             }
 | |
|             $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
 | |
|             if ($const) {
 | |
|                 $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
 | |
|             } else {
 | |
|                 $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         $this->SSResiduals = $SSres;
 | |
|         $this->DFResiduals = $this->valueCount - 1 - $const;
 | |
| 
 | |
|         if ($this->DFResiduals == 0.0) {
 | |
|             $this->stdevOfResiduals = 0.0;
 | |
|         } else {
 | |
|             $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
 | |
|         }
 | |
|         if (($SStot == 0.0) || ($SSres == $SStot)) {
 | |
|             $this->goodnessOfFit = 1;
 | |
|         } else {
 | |
|             $this->goodnessOfFit = 1 - ($SSres / $SStot);
 | |
|         }
 | |
| 
 | |
|         $this->SSRegression = $this->goodnessOfFit * $SStot;
 | |
|         $this->covariance = $SScov / $this->valueCount;
 | |
|         $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - pow($sumX, 2)) * ($this->valueCount * $sumY2 - pow($sumY, 2)));
 | |
|         $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
 | |
|         $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
 | |
|         if ($this->SSResiduals != 0.0) {
 | |
|             if ($this->DFResiduals == 0.0) {
 | |
|                 $this->f = 0.0;
 | |
|             } else {
 | |
|                 $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
 | |
|             }
 | |
|         } else {
 | |
|             if ($this->DFResiduals == 0.0) {
 | |
|                 $this->f = 0.0;
 | |
|             } else {
 | |
|                 $this->f = $this->SSRegression / $this->DFResiduals;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     protected function leastSquareFit($yValues, $xValues, $const)
 | |
|     {
 | |
|         // calculate sums
 | |
|         $x_sum = array_sum($xValues);
 | |
|         $y_sum = array_sum($yValues);
 | |
|         $meanX = $x_sum / $this->valueCount;
 | |
|         $meanY = $y_sum / $this->valueCount;
 | |
|         $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
 | |
|         for ($i = 0; $i < $this->valueCount; ++$i) {
 | |
|             $xy_sum += $xValues[$i] * $yValues[$i];
 | |
|             $xx_sum += $xValues[$i] * $xValues[$i];
 | |
|             $yy_sum += $yValues[$i] * $yValues[$i];
 | |
| 
 | |
|             if ($const) {
 | |
|                 $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
 | |
|                 $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
 | |
|             } else {
 | |
|                 $mBase += $xValues[$i] * $yValues[$i];
 | |
|                 $mDivisor += $xValues[$i] * $xValues[$i];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // calculate slope
 | |
| //        $this->slope = (($this->valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->valueCount * $xx_sum) - ($x_sum * $x_sum));
 | |
|         $this->slope = $mBase / $mDivisor;
 | |
| 
 | |
|         // calculate intersect
 | |
| //        $this->intersect = ($y_sum - ($this->slope * $x_sum)) / $this->valueCount;
 | |
|         if ($const) {
 | |
|             $this->intersect = $meanY - ($this->slope * $meanX);
 | |
|         } else {
 | |
|             $this->intersect = 0;
 | |
|         }
 | |
| 
 | |
|         $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Define the regression
 | |
|      *
 | |
|      * @param    float[]        $yValues    The set of Y-values for this regression
 | |
|      * @param    float[]        $xValues    The set of X-values for this regression
 | |
|      * @param    boolean        $const
 | |
|      */
 | |
|     public function __construct($yValues, $xValues = array(), $const = true)
 | |
|     {
 | |
|         //    Calculate number of points
 | |
|         $nY = count($yValues);
 | |
|         $nX = count($xValues);
 | |
| 
 | |
|         //    Define X Values if necessary
 | |
|         if ($nX == 0) {
 | |
|             $xValues = range(1, $nY);
 | |
|             $nX = $nY;
 | |
|         } elseif ($nY != $nX) {
 | |
|             //    Ensure both arrays of points are the same size
 | |
|             $this->error = true;
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         $this->valueCount = $nY;
 | |
|         $this->xValues = $xValues;
 | |
|         $this->yValues = $yValues;
 | |
|     }
 | |
| }
 | 
