223 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| 
 | |
| require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
 | |
| require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php';
 | |
| 
 | |
| /**
 | |
|  * PHPExcel_Polynomial_Best_Fit
 | |
|  *
 | |
|  * Copyright (c) 2006 - 2015 PHPExcel
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  * @category   PHPExcel
 | |
|  * @package    PHPExcel_Shared_Trend
 | |
|  * @copyright  Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 | |
|  * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 | |
|  * @version    ##VERSION##, ##DATE##
 | |
|  */
 | |
| class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit
 | |
| {
 | |
|     /**
 | |
|      * Algorithm type to use for best-fit
 | |
|      * (Name of this trend class)
 | |
|      *
 | |
|      * @var    string
 | |
|      **/
 | |
|     protected $bestFitType = 'polynomial';
 | |
| 
 | |
|     /**
 | |
|      * Polynomial order
 | |
|      *
 | |
|      * @protected
 | |
|      * @var    int
 | |
|      **/
 | |
|     protected $order = 0;
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Return the order of this polynomial
 | |
|      *
 | |
|      * @return     int
 | |
|      **/
 | |
|     public function getOrder()
 | |
|     {
 | |
|         return $this->order;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Return the Y-Value for a specified value of X
 | |
|      *
 | |
|      * @param     float        $xValue            X-Value
 | |
|      * @return     float                        Y-Value
 | |
|      **/
 | |
|     public function getValueOfYForX($xValue)
 | |
|     {
 | |
|         $retVal = $this->getIntersect();
 | |
|         $slope = $this->getSlope();
 | |
|         foreach ($slope as $key => $value) {
 | |
|             if ($value != 0.0) {
 | |
|                 $retVal += $value * pow($xValue, $key + 1);
 | |
|             }
 | |
|         }
 | |
|         return $retVal;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Return the X-Value for a specified value of Y
 | |
|      *
 | |
|      * @param     float        $yValue            Y-Value
 | |
|      * @return     float                        X-Value
 | |
|      **/
 | |
|     public function getValueOfXForY($yValue)
 | |
|     {
 | |
|         return ($yValue - $this->getIntersect()) / $this->getSlope();
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Return the Equation of the best-fit line
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      **/
 | |
|     public function getEquation($dp = 0)
 | |
|     {
 | |
|         $slope = $this->getSlope($dp);
 | |
|         $intersect = $this->getIntersect($dp);
 | |
| 
 | |
|         $equation = 'Y = ' . $intersect;
 | |
|         foreach ($slope as $key => $value) {
 | |
|             if ($value != 0.0) {
 | |
|                 $equation .= ' + ' . $value . ' * X';
 | |
|                 if ($key > 0) {
 | |
|                     $equation .= '^' . ($key + 1);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return $equation;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Return the Slope of the line
 | |
|      *
 | |
|      * @param     int        $dp        Number of places of decimal precision to display
 | |
|      * @return     string
 | |
|      **/
 | |
|     public function getSlope($dp = 0)
 | |
|     {
 | |
|         if ($dp != 0) {
 | |
|             $coefficients = array();
 | |
|             foreach ($this->_slope as $coefficient) {
 | |
|                 $coefficients[] = round($coefficient, $dp);
 | |
|             }
 | |
|             return $coefficients;
 | |
|         }
 | |
|         return $this->_slope;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     public function getCoefficients($dp = 0)
 | |
|     {
 | |
|         return array_merge(array($this->getIntersect($dp)), $this->getSlope($dp));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Execute the regression and calculate the goodness of fit for a set of X and Y data values
 | |
|      *
 | |
|      * @param    int            $order        Order of Polynomial for this regression
 | |
|      * @param    float[]        $yValues    The set of Y-values for this regression
 | |
|      * @param    float[]        $xValues    The set of X-values for this regression
 | |
|      * @param    boolean        $const
 | |
|      */
 | |
|     private function polynomialRegression($order, $yValues, $xValues, $const)
 | |
|     {
 | |
|         // calculate sums
 | |
|         $x_sum = array_sum($xValues);
 | |
|         $y_sum = array_sum($yValues);
 | |
|         $xx_sum = $xy_sum = 0;
 | |
|         for ($i = 0; $i < $this->valueCount; ++$i) {
 | |
|             $xy_sum += $xValues[$i] * $yValues[$i];
 | |
|             $xx_sum += $xValues[$i] * $xValues[$i];
 | |
|             $yy_sum += $yValues[$i] * $yValues[$i];
 | |
|         }
 | |
|         /*
 | |
|          *    This routine uses logic from the PHP port of polyfit version 0.1
 | |
|          *    written by Michael Bommarito and Paul Meagher
 | |
|          *
 | |
|          *    The function fits a polynomial function of order $order through
 | |
|          *    a series of x-y data points using least squares.
 | |
|          *
 | |
|          */
 | |
|         for ($i = 0; $i < $this->valueCount; ++$i) {
 | |
|             for ($j = 0; $j <= $order; ++$j) {
 | |
|                 $A[$i][$j] = pow($xValues[$i], $j);
 | |
|             }
 | |
|         }
 | |
|         for ($i=0; $i < $this->valueCount; ++$i) {
 | |
|             $B[$i] = array($yValues[$i]);
 | |
|         }
 | |
|         $matrixA = new Matrix($A);
 | |
|         $matrixB = new Matrix($B);
 | |
|         $C = $matrixA->solve($matrixB);
 | |
| 
 | |
|         $coefficients = array();
 | |
|         for ($i = 0; $i < $C->m; ++$i) {
 | |
|             $r = $C->get($i, 0);
 | |
|             if (abs($r) <= pow(10, -9)) {
 | |
|                 $r = 0;
 | |
|             }
 | |
|             $coefficients[] = $r;
 | |
|         }
 | |
| 
 | |
|         $this->intersect = array_shift($coefficients);
 | |
|         $this->_slope = $coefficients;
 | |
| 
 | |
|         $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum);
 | |
|         foreach ($this->xValues as $xKey => $xValue) {
 | |
|             $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /**
 | |
|      * Define the regression and calculate the goodness of fit for a set of X and Y data values
 | |
|      *
 | |
|      * @param    int            $order        Order of Polynomial for this regression
 | |
|      * @param    float[]        $yValues    The set of Y-values for this regression
 | |
|      * @param    float[]        $xValues    The set of X-values for this regression
 | |
|      * @param    boolean        $const
 | |
|      */
 | |
|     public function __construct($order, $yValues, $xValues = array(), $const = true)
 | |
|     {
 | |
|         if (parent::__construct($yValues, $xValues) !== false) {
 | |
|             if ($order < $this->valueCount) {
 | |
|                 $this->bestFitType .= '_'.$order;
 | |
|                 $this->order = $order;
 | |
|                 $this->polynomialRegression($order, $yValues, $xValues, $const);
 | |
|                 if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
 | |
|                     $this->_error = true;
 | |
|                 }
 | |
|             } else {
 | |
|                 $this->_error = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | 
