Kiểm định Shapiro-Wilk (Shapiro-Wilk Test)

Kiểm định Shapiro-Wilk là một trong những kiểm định thống kê mạnh mẽ và phổ biến nhất được sử dụng để kiểm tra xem một mẫu dữ liệu có tuân theo phân phối chuẩn (normal distribution) hay không.

1. Giả thuyết kiểm định

Lưu ý quan trọng: Trong kiểm định này, chúng ta thường mong muốn có một p-value lớn (p > 0.05) để không bác bỏ giả thuyết \(H_0\), từ đó có thể kết luận rằng dữ liệu tuân theo phân phối chuẩn và đủ điều kiện để sử dụng các kiểm định tham số.

2. Thống kê kiểm định (W-statistic)

Thống kê kiểm định W được tính toán dựa trên sự so sánh giữa các giá trị đã được sắp xếp của mẫu với các giá trị kỳ vọng tương ứng từ một phân phối chuẩn.

\[ W = \frac{(\sum_{i=1}^n a_i x_{(i)})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \]

Trong đó:

Giá trị W nằm trong khoảng từ 0 đến 1. Giá trị W càng gần 1 thì dữ liệu càng gần với phân phối chuẩn.

3. Ứng dụng trong y tế công cộng

Kiểm tra giả định về tính chuẩn của dữ liệu là một bước cực kỳ quan trọng trước khi thực hiện nhiều phân tích thống kê tham số.